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Based on vibration response measured at a limited number of points and continuous
Hilbert space basis functions combined with spatial di!erentiation, a new method for strain
tensor "eld assessment, in the frequency domain, is proposed. Essentially, results from
hybrid modal analysis (HMA), are transformed from the displacement space to the strain
space by use of "nite di!erence schemes. This approach will produce a continuous strain
(second order) tensor, except on a number of surfaces where material discontinuities are
present.

Hybrid strain analysis (HSA), interpreted as dynamic strain analysis based on HMA, may
be done in several ways. The method proposed here is the "rst realization of HSA and it has
been veri"ed by an experimental test case. The predicted results correspond well with
measured strain responses.

The method is applicable to a vibrating structure, regardless of the material properties of
the body. Hence, any possible damping, e.g., material damping, damping in joints between
structural parts, etc., need not be known a priori. Moreover, the zero frequency elastic
properties and mass distribution of the structure need not be the true ones; any (meaningful)
arbitrary values of the elastic properties and mass distribution can be assumed in order to
obtain the Hilbert space basis functions. Material inhomogeneities present, i.e., in
a piecewise continuous structure, will cause the method (when applied with unknown
material properties) to be somewhat inaccurate in the vicinity around the discontinuity. The
derived model is valid for a speci"c excitation, not necessarily known.
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1. INTRODUCTION

One important research "eld within the discipline of structural dynamics and
vibroacoustics is characterization of the spatial distribution of dynamic displacement/
strain/stress "elds. In engineering applications, such as cars, ships and aircrafts, high
strain/stress levels can, when occurring under a (long) period of time, cause failure from
fatigue.

Detailed spatial characterization requires, when based on experimental data alone,
a large number of measurements at a large number of points. To reduce costs it is thus
desirable to use a minimal amount of experimental data, i.e., as few measurements and
measurement points as possible. The contradictory demands for high spatial resolution and
less extensive measurements may to some extent be solved using the hybrid modal analysis
(HMA) technique [1]. The HMA technique is based on a restricted set of measured
vibrations (acceleration, velocity or displacement), a knowledge of the geometry of the
structure studied and on a set of numerically approximated three-dimensional, spatial basis
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functions which are characteristic and well suited for the geometry of the part of the
vibrating structure studied. In this context characteristic and well-suited means that
the basis functions should satisfy any homogeneous essential boundary conditions for the
displacement. Having such basis functions and applying HMA to a vibrating structure,
the spatial distribution of the dynamic displacement "eld may be obtained. Here and in the
following, spatial basis functions and elastic (normal) displacement (eigen) modes are used
synonymously.

In the HMA technique, numerical approximations of elastic (continuous) displacement
modes are used to supplement measured vibrations with information that enhances the
spatial resolution of the measured data. Numerical approximations of the modes can be
obtained by, for example, the "nite element method (FEM). Due to the detailed spatial
information which may be contained in these modes, the amount of measured data needed
may be drastically reduced, for a given or desired spatial resolution, as long as the spatial
distribution and number of measurement points is such that they can resolve the shortest
wavelength of the spatial basis functions used. Typical applications of the technique is
extrapolation of measured data to actual responses not measured; see Dovstam [1], and as
an intermediate step in damping estimations [2]. It should be stressed that the technique is
applicable, at a speci"c excitation (not necessarily known), independently of the material
properties and that only the geometry of the vibrating body together with the measured
data and the co-ordinates of the measurement points need to be known. Accurate
geometrical description implies easily accessible, accurate basis functions de"ned as
approximations to well-de"ned normal modes of vibration.

A natural extension, as proposed by Dovstam [3], of the HMA is hybrid strain analysis
(HSA), where the displacement "eld, obtained by HMA, is spatially di!erentiated using, for
example, numerical di!erentiation. Strain measurements with conventional strain gauges
are not always possible. Moreover, they are also expensive, since the gauges are not reusable
and cannot be moved from point to point when they have been attached to the structure.
Thus, the need for alternative approaches is crucial for obtaining the strain tensor "eld, with
a limited number of measurement points.

The objective of the work behind this paper is development and validation
(experimentally) of hybrid strain analysis based on numerical di!erentiation. It is of great
importance to obtain a method that yields the detailed dynamic strain tensor "eld
regardless of the material properties, such as damping present, and also the possibility to
predict the strain tensor where measurements are impossible or too involved.

Using the method proposed in this paper will produce the strain tensor at arbitrary
points in the structure, regardless of the number of measured vibration responses; as long as
the spatial distribution and number of measurement points ful"ll the requirement to resolve
the shortest wavelength of the vibrations.

In Bernasconi and Ewins [4], an approach, in the time domain, for determining the
strain/stress "eld is outlined. They derive the strain tensor "eld in a body, but the derivation
is restricted to the case with proportional damping and known material properties. Koss
and Karczub [5] propose a method that concerns bending strain assessment using only two
accelerometers for an Euler}Bernouilli beam; it is a one-dimensional method and therefore
limited in its use. Camden and Simmons [6] establish the linear (one-dimensional)
displacement}strain relationship for a speci"c structure and application.

In Karczub and Norton [7] the bending strain in an Euler}Bernouilli beam is again
under study; this time the approach is based on "nite di!erence schemes for the second
order derivative of the transverse displacement, i.e., the curvature of the beam. The schemes
are equidistant, and the measurement points are symmetrically distributed around the point
of interest; hence, as they concluded, strain cannot be predicted at boundaries. Cuschieri [8]
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proposes an experimental technique to measure the structural intensity through an aircraft
fuselage; the technique involves estimation of the curvature by means of "nite di!erence
schemes and discrete measurement points. Lee and Kim [9] studied the normal and shear
strains in a plate with a viscoelastic core layer. The strains are calculated using "nite
di!erence schemes on analytically obtained #exural vibrations of the plate with simple
support. Also they assume that the viscoelastic layer does not have frequency-dependent
material properties.

Throughout the text the three-dimensional displacement "eld in the time domain is
denoted by u (x, t ), and its frequency domain, Laplace transformed, counterpart is denoted
with a tilde above the function, i.e., u8 (x, s). Here, and in the following, s"a#iu is
a complex frequency variable where i, i2"!1, denotes the imaginary unit and u is the
circular frequency (rad/s) of vibration.

2. GOVERNING EQUATIONS

Consider a three-dimensional solid occupying a volume XLR3 ; strictly mathematically
speaking X is a compact set, i.e., a closed and bounded set. The vibrations of the vibrating
body may be described by a three-dimensional displacement "eld u"u (x, t) where x is
a point in the body, and t is the time variable. If vanishing body forces are assumed, the time
domain, linearized equations of motion are given by

!DT[r]#ouK"0, (1)

where o"o (x) is the mass distribution, r"r (x, t) is the Voight-matrix representation of
the stress tensor, and D is the linear (strain) partial di!erential operator de"ned in Appendix
A, and discussed in Appendix B.

The Laplace transformed frequency domain (s-domain) counterpart of equation (1) can
now be expressed as

!DT[r8 ]#s2ou8 "0, (2)

where r8 "r8 (x, s) and u8 "u8 (x, s) are the frequency domain stress and displacement "elds
respectively.

For a linear material at isothermal, but otherwise general conditions, the stress}strain
relationship can be described by

r8 "H< e8 , (3)

where H< "H< (x, s) is a complex, position and frequency dependent constitutive 6]6
material matrix; e8 "e8 (x, s) is the frequency domain strain "eld. Assume that H< can be
decomposed as (see e.g., references [1, 10])

H< "H#HD"H1 #dH#HD , (4)

where H"H1 #dH and HD denote the true zero frequency, relaxed elastic properties, and
the frequency-dependent anelastic properties respectively. H1 and dH are the assumed,
arbitrary zero frequency elastic properties and the deviation from the true elastic zero
frequency properties respectively.
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3. DISPLACEMENT PREDICTIONS

Modelling and prediction of vibrations and acoustical behaviour in practice have to be
done using "nite dimensional (or discrete) models. Since the discrete model always is an
approximation of the continuous system, it is of great importance to choose a model that
approximates the system well enough. Today, discrete models are derived in engineering
applications using experimental modal analysis (see e.g., reference [11]). In reference [1]
a new technique that combines continuous elastic (normal) modes of vibration and
experimentally measured vibration responses is proposed. The technique is named hybrid
modal analysis (HMA) and it will produce the three-dimensional displacement "eld at
arbitrary points in the structure. In this section a short summary of the basic results and
ideas behind HMA will be given.

3.1. MODE SERIES EXPANSION AND SPATIAL BASIS FUNCTIONS

In the frequency domain the Laplace transformed displacement "eld, u8 , may be
represented by generalized Fourier series

u8 (x, s)"u8
M

(x, s)#u8
res

(x, s), (5)

u8
M

(x, s)"
M
+

m/1

c
m
(u8 )w(m)(x), (6)

where u8
res

(x, s) is the pointwise error, or residual. Hence, the displacement "eld can be
approximated by u8 (x, s)+u8

M
(x, s). The three-dimensional real vector "eld w (m)3R3 is

the mode shape number m with corresponding circular eigenfrequency u
m

satisfying
a suitable elastic eigenvalue problem (see Appendix A). The sequence Mw (m)N=

m/1
is known to

be complete in the Hilbert space L3
2
(X) (see Appendix A).

The s-dependent, i.e., frequency dependent, coe$cients c
m
(u8 ) in equation (6), are linear

functionals of the Laplace transformed displacement "eld u8 de"ned as

c
m
(u8 )"(u8 , ow (m)) /a

m
, a

m
"(w (m), ow (m))'0, (7, 8)

∀m3N. o is the mass distribution of the structure and (u, v) denotes the inner product, in
the function space L3

2
(X ) (see Appendix A). Equation (7) may be used when the whole "eld

u8 and o are known [12].
It is important to note that since it is only required that the modes w (m) constitute

a complete set of basis functions, the elastic constants (G and j for an isotropic material) and
the mass distribution, o, need not be the actual ones for the continuum occupying the
volume X. Hence, any meaningful value of the elastic constants and the mass distribution is
su$cient in order to obtain the modes, w (m). As a consequence, the material properties of the
structure in question need not be known, to get good results, when using hybrid modal
analysis as outlined in this section.

3.2. HYBRID MODAL ANALYSIS

Consider a "nite dimensional response model [1], with N responses. The displacement
response, ;I

i
, in a direction n;

i
, at a certain point P(i ), with co-ordinate vector x

P(i)
in the
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discrete model may be expressed as

;I
i
"

K
+
k/1

R
ik
FI
k
, (9)

where K is the total number of excitation points and R
ik

are receptances de"ned by the
quotient spectra

R
ik
"

uJ
n(i)

(x
P(i)

, s)

FI
k
(s)

, (10)

where uJ
n(i)

(x
P(i)

, s)"n;
i
) u8 (x

P(i)
, s).

Now, let the vector U3 "U3 (s) correspond to the "nite dimensional response model with
component spectrum;I

i
(s) de"ned by a number N of measured degrees of freedom. Also let

M be the number of normal modes in a modal expansion of u8 , as in equation (6). Then, a real
and constant, modal N]M response matrix A is de"ned such that

U3 "AC3 #U3
res

, A
im
"n;

i
)w (m)(x

P(i)
), (11, 12)

C3 "[c
1
(u8 ), c

2
(u8 ),2, c

M
(u8 )]T, U3

res
"AresC3 res, (13, 14)

Ares and C3 res are de"ned in analogy with equations (12) and (13).
From equation (11) follows that the coe$cient spectra can be estimated by

C3
est
"A`(U3 !U3

res
), (15)

where A` is the pseudoinverse of A. Estimates for the residual, U3
res

, in equation (15) are
discussed in section 4.

Now a vibration response, which is not measured, at a point y3X can be predicted using
the equation

u8
pred

(y, s)"W(y)C3
est
#u8

res
(y, s), (16)

where W(y) is the 3]M modal matrix de"ned as

W(y)"[w (1) (y), w (2)(y),2,w (M)(y)]"

w(1)
1

w(2)
1

2 w(M)
1

w(1)
2

w(2)
2

2 w(M)
2

w(1)
3

w(2)
3

2 w(M)
3

. (17)

Equations (11)}(16) constitute the basic concepts of hybrid modal analysis (HMA). The
responses ;I

i
in U3 are thus identi"ed by a number, N, of measured responses, and the

corresponding modal response matrix A, as in equation (12), is constructed from the basis
functions w (m).

3.3. SECTION SUMMARY

The spatial basis functions, w (m), are obtained by solving the elastic eigenvalue problem;
displacement (or acceleration/velocity transformed to displacement) vibration responses,
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;I
i
, are measured on the structure at discrete points, P (i); thereafter a least-squares "t of the

Fourier coe$cients, c
m
(u8 ), is obtained by using equation (15). Now the displacement vector,

u8 , can be predicted anywhere in the structure using equation (16); i.e., since W(y) is available
at some (high) number of points in the structure (e.g., decided by the FE-net) and combined
with interpolation, displacement at arbitrary points in the structure can be predicted.

4. RESIDUAL AND RESPONSE MODEL

In the general case, di!erent coe$cients c
m
(u8 ) of equation (6) are not independent; i.e., the

modes are coupled. For a linear structure, coupling may occur due to damping and
deviations between H1 and the true elastic (zero frequency) modulus matrix, H"H1 #dH;
even if the series is not truncated, coupling may occur. Also, the material properties are
unknown in a typical application of HSA and HMA, and the modes should therefore, in
general, be assumed to be coupled.

Situations in real-world applications where the &&true'' modes are completely uncoupled
are quite rare, though there are many cases where they are almost uncoupled. One example
is when the anelastic properties are proportional to the elastic properties, e.g., as in the case
of classical Rayleigh damping.

Although it is not known what the true residual, U3
res

, looks like, it may in some cases be
approximated as uncoupled. Another approach would be to include a large number of
modes in the coe$cient estimation, i.e., large M in equations (11)}(14), and neglect the
residual completely. The number of measurements, N, must then also be increased for
the system of equations to be su$ciently overdetermined. Here overdetermined means that
the number of measurements, N, should be large compared to the number of modes, M, so
that the estimated Fourier coe$cients are smooth enough in the frequency interval of
interest.

In an application where the excitation is not known, there is no way of estimating the
residual. Hence, it must be neglected and a large number of modes should be included in the
coe$cient estimation.

4.1. MODEL BASED ON UNKNOWN MATERIAL PROPERTIES

Let oN be some arbitrary mass distribution, and H1 be the assumed zero frequency elastic
material properties, as de"ned in section 2. Then solving the elastic eigenvalue problem with
the above material properties, gives the modal circular eigenfrequencies, u6

m
, and the

normal modes, w6 (m). The bar above each variable denotes that it is derived with some
assumed material properties.

Then taking the inner product between the equations of motion (2) and w6 (m), and using
the stress}strain relationship (3) and equations (4), (7), (A.17) and (A.18) it follows after
partial integration that

c
m
(u8 )"

FI (m)L (s)!i (m)D (s)!i (m)d (s)

aN
m
(u6 2

m
#s2)

, (18)

where the modal force FI (m)L (s) is given as

FI (m)L (s)"(tJ
n
, w6 (m))L (19)
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with ( ) , ))L de"ned in Appendix A, and t8
n

is the Cartesian traction vector also de"ned in
Appendix A. For point force excitation at point x

e
acting along the x

k
-axis, FI (m)L (s)"

FI
k
(s) )wN (m)

k
(x

e
).

The functionals i (m)D (s) and i (m)
d (s) in equation (18) are de"ned as

i (m)D (s)"SHDe8 , e6 (m)T, (20)

i (m)
d (s)"SdHe8 , e6 (m)T, (21)

where S ) , )T is the inner product for six-dimensional vector "elds as de"ned in Appendix A,
and e8 is the current strain vector "eld due to the actual excitation, e8 (m)"D[w6 (m)] is the
elastic strain mode, and HD and dH are de"ned in section 2. It can be seen, from equations
(20) and (21), that since both functionals i (m)D (s) and i (m)

d (s) depend on the whole current
strain vector "eld e8 , the coe$cients c

m
(u8 ) are, in general, coupled.

Equation (18) is analogous to Dovstam [1, equation (52)]. The only di!erence is that the
true mass distribution is not assumed to be known.

It is clear, from equations (20) and (21), that i (m)D (s) and i (m)
d (s) depend on respective the

damping present and the deviation from the true elastic zero frequency modulus matrix.
Long strain (the true current strain at frequency s) wavelengths combined with short
wavelength natural modes cause i (m)D (s) and i (m)

d (s) to be small; hence they may be neglected
in some cases for high order modes. A one-dimensional example of this is a strain "eld
e6"sin(nx) and elastic strain mode e6 (m)"sin(mnx) in the domain x3[0, a]. Then i (m)

d (s) is
small for high values of m and arbitrary values of a.

With rigid-body modes present it follows from equation (18) that the Fourier coe$cients,
c
m
(u8 ), for the rigid-body modes are given explicitly as

c
m
(u8 )"!

FI
k
(s) )wN (m)

k
(x

e
)

aN
m
u2

, (22)

since u6
m
,0, s"iu and e6 (m),0 for those modes. Note that in an application with

unknown excitation the Fourier coe$cients for the rigid-body modes must be estimated
using equation (15).

Now, since it is generally not possible to say anything about the damping part, i (m)D , nor
the elastic deviation part, i (m)

d , one possible way to proceed is to neglect them and use as
many modes, M, as possible. The response, due to a point force with unit spectrum
FI
k
(s)"1, is then expressed as

r
ik
+

M
+

m/1

c
m
(u8 )wN (m)

i
(x)#

mmax

+
m/M`1

wN (m)
i

(x)wN (m)
k

(x
e
)

aN
m
(u6 2

m
#s2)

, (23)

where r
ik
"uN

i
(x, s)/FI

k
(s), and m

max
is some positive integer (i.e., the maximum number of

modes available). Another obvious possibility is to neglect the whole numerator,
FI (m)L (s)!i (m)D (s) !i (m)

d (s), in equation (18) for all m larger than M, i.e., to use equation (6)
directly with a large enough M.

Now, the response model, with six rigid-body modes, to be used in the following can be
given as:

R
ik
(u)+!

6
+

m/1

wN (m)
i

(x
P(i)

)wN (m)
k

(x
e
)

aN
m
u2

#

M
+

m/7

wN (m)
i

(x
P(i)

)C
m
(u)#Res

ik
, (24)
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where R
ik
(u) is de"ned according to equation (10), C

m
(u)"(c

m
(u8 ))

s/iu and Res
ik
, when

included, is the residual de"ned as

Res
ik
"

mmax

+
m/M`1

wN (m)
i

(x
P(i)

)wN (m)
k

(x
e
)

aN
m
(u6 2

m
!u2)

. (25)

4.2. SECTION SUMMARY

In this section the residual and response model were examined in detail for the case with
point force excitation, though the expression in equation (18) is generally valid for any type
of excitation. In most applications the residual, as in equation (25), may or has to be
neglected completely. An indication of this will be noticed when comparing the predicted
vibration (displacement) response with and without the residual, using equation (24), with
independently measured vibration (displacement, or velocity, acceleration transformed into
displacement) spectrum.

5. DYNAMIC STRAIN ASSESSMENT

An accurate representation of the dynamic displacement "eld can now be obtained using
the results from the previous sections. In this section, a method that combines the results
from the above sections with numerical spatial di!erentiation is outlined. This is the "rst
realization of a class of methods [3], called hybrid strain analysis (HSA).

The idea behind the method is to obtain the strain tensor in a vibrating structure
without the use of conventional strain gauges. Vibration (displacement, velocity or
acceleration) frequency response function (FRF) measurements are carried out on the
structure. It must be emphasized that measurements must be carried out so that the
spatial distribution and number of measurement points is chosen such that it is possible
to resolve the shortest wavelength of the vibration "eld, u8 , to be characterized,
which in#uences the choice of the displacement modes, w (m) m3[1,2,M], used in
the modal expansion (6). Thereafter, the complete displacement "eld of the body in
question, or a part of it, can be obtained by means of HMA. With the use of "nite di!erence
schemes the strain tensor can be calculated for the whole body, or just certain parts/points
of interest.

By means of given displacements and "nite di!erence schemes the strain tensor can be
approximated to any degree of accuracy due to Weierstrass approximation theorem [13].
Predicted displacement responses, obtained by HMA, at a "nite number of points adjacent
to the point in question are utilized in the "nite di!erence procedure. The computational
cost can in this way be kept to a minimum without loss of accuracy.

The requirements for HMA are: an accurate geometrical description of the structure;
measured vibrations including measurement direction and the co-ordinates for the
measurement points. For HSA this is also true, but if material discontinuities are present (as
for built-up, piecewise continuous structures), the number of modes, used in the modal
expansion (6), must be increased in order to describe the discontinuity of the strain tensor,
and thus also the number of measured responses must be increased. However, if the &&true''
zero frequency elastic material properties and mass distribution are known, HSA may
produce accurate results, even in the vicinity of the material discontinuity, without
increasing the number of modes.
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5.1. HYBRID STRAIN ANALYSIS

The Eulerian "nite strain tensor in Cartesian co-ordinates is de"ned as (see reference
[14])

e
ij
"

1

2 A
Lu

i
Lx

j

#

Lu
j

Lx
i

!

Lu
k

Lx
i

Lu
k

Lx
j
B , (26)

where the summation convention is used; i.e., sum on index k. The strain tensor "eld,
e"e(x, t ), describes the strain of the body in the time domain; the frequency domain
counterpart is denoted as e8 "e6 (x, s).

In most applications the strain tensor, as in equation (26), is approximated as linear;
i.e., the last term of equation (26) is neglected. Calculating the strain tensor "eld, e8 , from the
displacement "eld, u8 , in a three-dimensional body thus involves calculations of nine
di!erent "rst order derivatives.

Since the complete displacement "eld in the frequency domain, u8 , is available through the
use of HMA, an approximation of the strain tensor "eld in the frequency domain can be
obtained through numerical spatial di!erentiation of the estimated "eld u8 , by use of, for
example, "nite di!erence schemes. When the elastic modes, w (m) (x), are obtained through
"nite element calculations, the spatial node distribution in the "nite element mesh is in
general non-equidistant; in reference [15] "nite di!erence schemes for three and "ve
non-equidistant distributed node points were derived. An example of this, for the
calculation of the linear strain tensor component, eJ

11
, with a three-point (that is, order two)

forward di!erence scheme is

eJ
11

(x
0
, s)"!uJ

1
(x

0
, s)

2h
1
#h

2
h
1
(h

1
#h

2
)
#uJ

1
(x

1
, s)

h
1
#h

2
h
1
h
2

!uJ
1
(x

2
, s)

h
1

h
2
(h

1
#h

2
)
, (27)

where h
1

and h
2

are the distances in the "rst (i.e., x
1
) direction between x

0
and x

1
,

respectively, x
1

and x
2
. By use of schemes for non-uniformly distributed nodes (i.e., forward

and backward), the strain tensor on the boundary of the structure and on the interface
between material discontinuities can be calculated.

Assume that a "nite di!erence scheme of order n, i.e., n#1 points, is to be used; then the
hybrid strain analysis can be summarized as follows.

(1) Solution of an eigenvalue problem (as in equations (A.17) and (A.18)) for the body
studied, with detailed geometrical description (i.e., a high number of "nite elements) if
HSA is based on the "nite element method. The number of modes, M, in the mode series
expansion should be chosen so that the residual approximation is as correct as possible
(i.e., m

max
AM), or such that the residual may be neglected (a matter of wavelength for

number M used).
(2) Vibration FRF measurements at N number of points on the structure. N should be large

enough compared with the number of modes M so that the system of equations, as in
equation (11), is overdetermined enough, and so that the shortest wavelength of the
vibration "eld, u8 , and the basis "elds, w (m), can be resolved (see section 6).

(3) Residual approximation, if the excitation is known, using equation (25). If the number of
modes, M, is high enough the residual can be neglected. Note that the residual
approximation according to equation (25) can actually worsen the results. An indication
of this will be noticed when validating the coe$cient spectra, as in item (5).
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(4) Fourier coe$cient spectra estimation, by use of equation (15), and if the excitation is
known by use of equation (22) for the rigid-body modes.

(5) Validation of coe$cient spectra using equations (5) and (6), and independently
measured spectra.

(6) Displacement response prediction at 3n#1 points (i.e., the point of interest and
n adjacent points in each (Cartesian) co-ordinate direction) by use of equation (16) with
residual part de"ned by equation (25), if not neglected.

(7) Strain tensor calculation using "nite di!erence schemes of order n and equation (26).

Items (3) and (4) should, if possible, be done with and without residual, and comparison with
independently measured spectra should be made for both according to item (5).

If the structure in question has a very complex geometry and the strain tensor is only
sought on some local part of the structure, HSA can be performed on this local part; that is,
the measurements need only be distributed over the local structure. This will be outlined in
a forthcoming paper by the author.

5.2. SECTION SUMMARY

It cannot be emphasized enough that the strain tensor can easily be obtained at arbitrary
points in the structure. This is an important consequence of the fact that the displacement
"eld can be obtained anywhere in the structure, and thus the complete strain tensor "eld is
easily obtained by use of "nite di!erence schemes.

6. MEASUREMENTS AND NUMBER OF ELASTIC MODES

When measurements of a vibrating structure are to be performed, the question of the
spatial distribution of measurement points always arises. In a situation with a speci"c, but
arbitrary, displacement "eld u8 (x, s) there is no possibility of knowing in advance the length
of the waves of u8 . On the other hand, when using HMA and HSA, as described in sections
3 and 5, respectively, there is implicit knowledge of the spatial wavelengths of the elastic
eigenmodes w (m). Therefore, some information of the needed spatial distribution of
measurement points may be obtained from the eigenmode with shortest wavelength used,
which is usually the eigenmode with highest mode number. The number of elastic
eigenmodes used should always be validated using separately measured vibration
(displacement) spectra. This will give some indication of the length of the waves of u8 (x, s),
i.e., if the predicted displacement "eld deviates (possibly due to aliasing; see reference [16])
from the measured, the number of elastic eigenmodes should be increased.

In three-dimensional space the minimum requirements, assuming that a high enough
number of modes M has been chosen, is that the number of measurements, N, or (more
exact) the maximum distance between the measurements, must be chosen so that the elastic
eigenmode number M can be resolved in each co-ordinate direction. Explicitly, this should
be satis"ed with more than three measurements per wavelength for mode number M. For
example, in a situation with two complete waves covering the length of a structure, there
should be at least seven measurements distributed over the length.

When dealing with structures with unknown excitation and/or unknown zero frequency
elastic material properties and mass distribution, especially with the case of built up
piecewise continuous structures (a structure consisting of sub-structures with di!erent
material properties), it is very important to satisfy the minimum requirements of
measurement point spacing (as discussed above) in each co-ordinate direction; otherwise the
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predicted (strain/displacement) response may be inaccurate. In some cases, when the elastic
material properties and mass distribution in a piecewise continuous structure is known,
good results may be obtained even if the minimum requirements are not satis"ed in one
direction. This is due to the fact that the elastic eigenmodes represent the structural
behaviour very well.

In applications with known zero frequency elastic properties and mass distribution, the
number of modes, M, to be used in the modal expansion (6), is directly related to the
frequency range of the analysis; that is, M is chosen so that u(u

max
(u

M
with

u
max

(u
mea

where f"u/2n and u"ImMsN. f
max

is the maximum frequency of interest, and
f
mea

is the maximum measured frequency.

7. CONVERGENCE AND SENSITIVITY TO PERTURBATIONS

The question of convergence or not is of great importance when dealing with series. Since
the "elds w (m), m"1, 2,2, are assumed to constitute a complete set of normal modes, the
Fourier series, as in equation (6), always converges [13] to u8 in the meaning

lim
M?=

Eu8
M
!u8 EL3

2 (X)
" lim

M?=
J(u8

M
!u8 , u8

M
!u8 )"0, (28)

where E)EL3
2(X)

is the L3
2
(X ) norm de"ned in Appendix A.

Due to equation (28), the mean value of the displacement "eld, u8
mean

, over arbitrary small,
but "nite, volumes at each point x3X, may be approximated by a sum, u8

M,mean
, to any

required accuracy [1]. For the de"nition of mean values see Appendix A. Hence, in the
l
2
-norm, as de"ned in Appendix A, at a point p3X

lim
M?=

Eu8
M,mean

!u8
mean

E
l2
"0. (29)

Assuming that the strain}displacement relations are linear (i.e., the quadratic terms in
equation (26) vanish) then the frequency domain strain}displacement relation at each point
p3X can be described by

e8 "D[u8 ], (30)

where D is de"ned in Appendix A. For the mean value of the six-dimensional strain "eld,
with l

2
-norm de"ned in Appendix A, at a point p3X, &¸, ∀e'0 (¸ is "nite) so that

Ee8
L,mean

!e8
mean

E
l2
"ED[u8

L,mean
]!D[u8

mean
]E

l2

)K ) Eu8
L,mean

!u8
mean

E
l2
(e, (31)

where the boundedness (Appendix B) of the strain operator (for piecewise continuously
di!erentiable displacements) was used. K is a "nite positive real number. (see Appendix B).
Thus for a high number of modes ¸ the predicted strain tensor is close to the true strain
tensor. It is vital to keep in mind that mean convergence, as in equation (28), does not, in
general, imply pointwise convergence; but it is known [13] that if u8

M
(x, s) converges to

u8 (x, s) in L3
2
(X) then there is a subsequence of u8

M
(x, s) that converges to u8 (x, s) for almost all

x3X.
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It must be emphasized that the integer ¸ must be "nite for equation (31) to be valid. With
¸ going to in"nity, there will not, in general, be (pointwise) convergence. To see this
consider a one-dimensional example with basis functions u

L
(x)"sin(¸x) with derivative (or

strain) D[u
L
]"¸ cos(¸x) which will not be "nite when ¸ goes to in"nity.

To be able to specify error bounds for the strain tensor calculated using HSA, studies
must be made as to how perturbations in measured response a!ect the calculated strain
tensor.

Let dU3 "U3 !U3
mea

be some error in the measured response of a vibrating structure. U3 is
de"ned as in equation (11), and U3

mea
is the measured counterpart to U3 . Fourier coe$cient

estimation, as in equation (15), for the true and measured response can be expressed as

C3 true
est

"A`(U3 !U3
res

), C3 mea
est

"A` (U3
mea

!U3
res

). (32, 33)

Let W(x)"[w (1) (x), w (2)(x),2, w (M)(x)] be the 3]M modal matrix. Then the predicted
displacement, u8

pred
, can be expressed as

u8
pred

(x, s)"W(x)C3
est
#u8

res
(x, s) (34)

for a point in the body, X with co-ordinate vector x. Now the strain tensor can be calculated
using equation (30). For the true and measured response the Voight-matrix representation
of the strain tensors are, respectively,

e8 (x, s)"D[W(x)]C3 true
est

#D[u8
res

(x, s)], (35)

e8
mea

(x, s)"D[W(x)]C3 mea
est

#D[u8
res

(x, s)]. (36)

Subtract equation (36) from equation (35) and de"ne de8 "e8 !e8
mea

as the pointwise error
in the calculated strain tensor caused by error in the response measurements. This yields

de8 (x, s)"D[W(x)](C3 true
est

!C3 mea
est

)"D[W(x)]A`dU3 , (37)

where in the last equality equations (32) and (33) were used. Using Cauchy}Schwarz'
inequality and the l

2
-norm on equation (37) gives the estimate

Ede8 E
l2
)ED[W(x)]E

l2
) EA`E

l2
) EdU3 E

l3
. (38)

Note that de8 is a six-dimensional vector and dU3 is an N dimensional vector.
If r is the rank of the response matrix A then the norm of the pseudoinverse, A`, is the

inverse of singular value number r (of A), i.e.,

EA`E
l2
"

1

q
r

, (39)

where q
r
is the singular value number r, if the singular values are ordered in a decreasing

sequence, i.e., singular-value number r is the smallest. The l
2
-norm of A is the "rst-singular

value of A, i.e.,

EAE
l2
"q

1
, (40)
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Numerical values for ED[W(x)]E
l2
, EA`E

l2
and ultimately equation (38) in one case are

given in section 8.

8. EXPERIMENTAL TEST CASE

In this section the hybrid strain analysis (HSA) proposed in section 5 is validated
experimentally on a test plate by comparison with independent strain measurements. The
test plate consists of an aluminium plate glued to a Plexiglas, polymethyl methacrylate
(PMMA), plate. The dimensions of the plate are 0)630]0)300]0)0118m (x]y]z) with
a rectangular cutout having dimensions 0)330]0)100]0)0118m. The thicknesses of the two
materials are 0)0076 and 0)0042m for Plexiglas and aluminium respectively. The test plate
in question is depicted in Figure 1, where the "nite element mesh can also be seen. The "nite
element mesh consists of 4680 (solid) elements, with 20 nodes in each element. The total
number of nodes is 24 430, with seven nodes through the thickness. In the Plexiglas two
elements were used through the thickness, and for the aluminium only one was used.

The elastic eigenvalue problem was solved by means of ASKA Acoustics ([17]). A total
number of 89 eigenvalues were solved using the Block Lanczos algorithm.

A very accurate measurement of weight and volume gave o
Al
"2795 kg/m3 and

o
PMMA

"1181 kg/m3 for aluminium and Plexiglas respectively. For the aluminium plate
the zero frequency Young's modulus and the Poisson ratio were estimated to
E
Al
"73)0 GPa and l

Al
"0)3260, respectively, while for Plexiglas E

PMMA
"3)44 GPa and

l
PMMA

"0)3820.
The measurements of the test plate were carried out using a laser Doppler vibrometer

(LDV), in the frequency range 0)215}1024 Hz. Mobility frequency response functions in
z direction (normal to the plate surface) for 75 di!erent locations randomly distributed on
the Plexiglas side, but such that they cover the plate with measurement intervals in x and
y directions which are small enough for use of all modes up to mode number 60.

The plate was hanging in thin threads and excited with an electrodynamic shaker at
a location near the centre of gravity. Strain measurements, for validation purpose, were
made at two di!erent locations on the aluminium side of the plate by means of strain
gauges. TOYODA SEMICONDUCTORS type Sp-5-120B strain gauges are used. The
shaker was mounted on the aluminium side, while mobility measurements using LDV were
made normal to the Plexiglas side. One big advantage with measurements using laser
Doppler vibrometer (LDV) instead of conventional gauges such as accelerometers and
Figure 1. The test plate with "nite element mesh. The Plexiglas in facing downwards, i.e., in the negative
z direction.



TABLE 1

Co-ordinates of validation, estimation and excitation points

Point no. FE node no. x-co-ord. (m) y-co-ord. (m) z-co-ord. (m) Comment

120 5731 0)1200 0)1800 0)0118 Strain gauge
195 13 985 0)3000 0)1400 0)0118 Excitation
196 14 721 0)3200 0)1400 0)0000 Validation
291 11 154 0)2400 0)0800 0)0118 Strain gauge
* 11 153 0)2400 0)0800 0)0076 Interface point
* 11 156 0)2400 0)0800 0)0000 Plexiglas side

Figure 2. (a) Estimated Fourier coe$cient spectrum for mode number 7, with elastic eigenfrequency f
7
"70 Hz;

(b) estimated Fourier coe$cient spectrum for mode number 10, with elastic eigenfrequency f
10
"238Hz.
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strain gauges, is that a response can be obtained without interfering with the vibrations of
the structure.

The locations of the shaker and strain gauges can be seen in Table 1.
The HSA was carried out on the data from LDV measurements, transformed to

displacements, using ASKA-computed normal modes. Estimated Fourier coe$cients for
modes 7 and 10 are depicted in Figure 2. The mode coupling between modes 7 and 10 can be
seen by the dominating peaks at 78 Hz for both spectra. The number of modes M, as in the
modal expansion (6), was chosen to be 22. A comparison with the case of no residual in the
displacement prediction is depicted in Figure 3. As can be seen the predicted result with
residual give better agreement with the measurement, and hence the residual may be used in
HSA.

The displacements to be used in the "nite di!erence schemes were predicted. A total of
"ve points, uniformly distributed around point 291, were used to calculate the strain (eJ

22
) at



Figure 3. Predicted displacement at point 196 (on the Plexiglas side), not used in HMA, using residual and not:
**, predicted with 22 modes and residual; } } } , predicted with 22 modes and no residual; )* )*, measured.
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point 291. The result is depicted in Figure 4(a) with the measured strain response. The
coherence for the measurement was good at almost every frequency, as can be seen in
Figure 4(b), above 10 Hz and below 750 Hz.

Measurement error bounds for the calculated strain tensor at point 291 may be estimated
using the theory in section 7. The rank of the response matrix A is 16, since 22 modes were
used in HSA and six of them were rigid-body modes. The Fourier coe$cients for the
rigid-body modes were calculated using equation (22). According to equation (39) and with
q
16
"3)6341 EA`E

l2
"1/q

16
"0)2752. The l

2
-norm of D[W(x)] is, by use of equation (40),

ED[W(x)]E
l2
"2)0799. Using equation (38) now gives Ede8 E

l2
)0)5724 )EdU3 E

l2
.

The predicted strain at point 291 corresponds well to the measured strain in almost every
frequency interval except the "rst 30 Hz. As can be seen in Figure 4(a) the measured strain
approaches 4]10~8, while the predicted strain increases when the frequency approaches
zero. When decreasing the number of modes, M, included in the Fourier coe$cient
estimation (making the HMA equation more overdetermined), the predicted strain
spectrum converged to the measured strain spectrum. The conclusion is that the
signal-to-noise ratio, in the LDV measurements used as input to the HMA, was too small
for the strain predictions in the low-frequency region to be good.

For point 120 the strain was measured along a direction rotated 453 in the positive
direction around the z-axis. The strain tensor was predicted using HSA and thereafter
transformed so that the new y-axis was parallel to the measured direction. The co-ordinate
transformation involves the use of eJ

11
, eJ

22
and eJ

12
which were predicted. As can be seen in

Figure 5(a) the measured strain, e
453

, corresponds well to the predicted; hence, in particular,
the predicted eJ

12
is correct. eJ

12
is impossible to measure, and therefore co-ordinate

transformation is the only way to verify the predicted eJ
12

. As for the measurement of point
291 the measurement at point 120 is acceptable, above 10Hz and below 750 Hz, as can be
seen in Figure 5(b).



Figure 4. (a) Predicted and measured strain (eJ
22

) FRF at point 291 (at the aluminium side); (b) coherence for
measured strain (eJ

22
) FRF at point 291: **, predicted strain; } } }, measured strain.
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Since strain measurements inside the structure cannot be performed, HSA predicted
strain at node 11 153 (i.e., the node between the two materials) is compared with direct "nite
element computations. Displacement FRFs, only from the Plexiglas side, were used in the
("ve point) "nite di!erence schemes for obtaining the strain tensor. The anelastic material
properties for the Plexiglas used in the direct FE-computation were estimated with the
method proposed by Dalenbring [2]. A total of 50 frequency responses, in the interval
[10,500]Hz, were calculated. The predicted eJ

11
is depicted in Figure 6, where it can be seen

that the agreement between HSA predicted strain and direct FE-computation is very good.
Here strain tensor assessment by direct FE-computation is interpreted as "nite di!erence
schemes, for obtaining the strain tensor, applied on direct FE-computed displacements. For
eJ
33

the agreement with direct FE-computation is not as good, as can be seen in Figure 7.
In all of the above examples the number of measurements was 75. As a comparison the

number was reduced to 18, distributed so that only elastic modes up to mode number 22
could be resolved. The result when applying HSA is almost as good as before, as is depicted
in Figure 8. However, it must be emphasized that the spatial distribution of measurements is
on the limit for resolving elastic mode number 22.

The above examples demonstrate the HSA predicted strains agree well with measured
ones. The analysis was based on known elastic (zero frequency) material properties for both
materials. The question as to what happens if the elastic material properties of the plate is
unknown, and furthermore, if not even the fact that the test plate is composed of two
di!erent kinds of materials, with di!erent elastic (zero frequency) material properties, is
posed. Assume that mean values for the true mass distribution, Young's modulus and the
Poisson ratio of the two materials were to be used for the whole plate when calculating the
normal modes. That is, the whole plate is assumed to have the following material properties:
o"1988 kg/m3, E"38)22 GPa and l"0)3540. The HSA was carried out using 15 modes,



Figure 5. (a) Predicted and measured strain (eJ
453

) FRF at point 120 (on the aluminium side); (b) coherence for
measured strain (eJ

453
) FRF at point 120: **, predicted strain; } }}, measured strain.

Figure 6. Predicted (e8
11

) FRF at node 11 153, i.e., the node on the inferface between the two materials. Direct
FE calculation uses estimated anelastic properties for the Plexiglas:**, predicted using 22 modes; *, direct FE
calculation.
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Figure 7. Predicted (eJ
33

) FRF at node 11 153, i.e., the node on the interface between the two materials. Direct
FE calculation uses estimated anelastic properties for the Plexiglas:**, predicted using 22 modes; *, direct FE
calculation.

Figure 8. Predicted and measured strain (eJ
22

) FRF at point 291 (on the aluminium side). HSA is based on 18
measured FRF: **, predicted strain using 18 measured FRF in HSA; } } }, measured strain.
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Figure 9. Predicted (eJ
11

) FRF at node 11 156, i.e., on the Plexiglas side. Strain predicted with correct material
properties (**) is based on 22 modes; strain predicted with assumed material properties (} } } ) is based on 15
modes. Direct FE calculation uses estimated anelastic properties for the Plexiglas:**, predicted using correct
(measured) material properties; } } }, predicted using assumed material properties; *, direct FE calculation.
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i.e., M"15. The result for strain predicted at point 291 on the Plexiglas side (i.e., node
11 156) can be seen in Figure 9, where it is compared with HSA predicted strain with correct
(measured) material properties and direct FE computation. As before, the anelastic material
properties for the Plexiglas used in direct FE computation were estimated using the method
proposed by Dalenbring [2]. The predicted strain using arbitrary material properties agrees
quite well. It must be kept in mind that in the z direction (i.e., through the thickness)
measurement was only made at z"0, hence it is hard to predict strain which depends on
the variation through the thickness (i.e., eJ

33
, eJ

23
and e8

31
). Also the number of measurements,

N, have not been increased, which it should in order to describe the discontinuity of the
strain tensor.

9. SUMMARY

Based on vibration response measured at a limited number of points and numerical
approximations to continuous Hilbert space basis functions combined with spatial
di!erentiation, the strain tensor "eld, in the frequency domain, can be obtained by use of the
method proposed in this paper. Essentially, results from HMA are transformed from the
displacement space to the strain space by use of "nite di!erence schemes.

The HMA technique provides a method of calculating the displacement vector, u8 , at
arbitrary points in the vibrating structure. This is obtained using a least-squares "t of the
Fourier coe$cients (or modal co-ordinates), c

m
(u8 ), in the mode series expansion from

a restricted set of measured vibration responses. Finite di!erence schemes enable
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calculation of the strain tensor, from the displacement vector, at arbitrary points, to
a desired accuracy.

The proposed method is applicable to a vibrating structure, regardless of the material
properties of the body. Hence, any possible damping, e.g., material damping, damping in
joints between structural parts, etc., need not be known a priori. Moreover, the zero
frequency elastic properties and mass distribution of the structure need not be the true ones;
any (meaningful) arbitrary values of the elastic properties and mass distribution can be
assumed in order to obtain the Hilbert space basis functions, w (m). Material inhomogeneities
present (as for a piecewise continuous structure) may cause the method (when applied with
unknown properties) to be inaccurate in the vicinity around the discontinuity. The model
derived is valid for a speci"c excitation, not necessarily known.

The minimum number and distribution of measurement points is a matter of the shortest
wavelength for the set of displacement modes, w (m) m3[1,2, M], to be used in the mode
series expansion of the displacement "eld.

When applied to an experimental test case, the proposed method is in good agreement
with both measured strain responses and strain responses obtained by direct FE
calculation.
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APPENDIX A: DEFINITIONS

The displacement "eld, u, the Voight-matrix representation of the symmetric stress tensor
"eld, r, and strain tensor "eld, e, in Cartesian co-ordinates are de"ned as

u"u (x, t)"[u
1

u
2

u
3
]T, (A.1)

r"r(x, t)"[p
11

p
22

p
33

p
12

p
23

p
31

]T, (A.2)

e"e(x, t)"[e
11

e
22

e
33

2e
12

2e
23

2e
31

]T, (A.3)

where x"[x
1
, x

2
, x

3
]T and t is the time variable.

The linear strain}displacement "eld relations are given as

e
ik
"

1

2 C
Lu

i
Lx

k

#

Lu
k

Lx
i
D . (A.4)

Then the "rst order (strain), partial di!erential operator matrix can be de"ned as

D"

L
Lx

1

0 0

0
L

Lx
2

0

0 0
L

Lx
3

L
Lx

2

L
Lx

1

0

0
L

Lx
3

L
Lx

2
L

Lx
3

0
L

Lx
1

(A.5)
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so that the strain "eld can be expressed as

e"D[u]. (A.6)

The Cartesian matrix representation, N"N (x), of the unit normal vector "eld,
n(x)"[n

1
, n

2
, n

3
]T, is de"ned as

N"

n
1

0 0 n
2

0 n
3

0 n
2

0 n
1

n
3

0

0 0 n
3

0 n
2

n
1

. (A.7)

The Cartesian traction vector is de"ned as

t
n
"Nr. (A.8)

The L3
2
(X )"¸

2
(X )]¸

2
(X )]¸

2
(X ) inner product (u, v) is de"ned as [13]

(u, v)"PX

u ) v* dX"PX

(u
1
v*
1
#u

2
v*
2
#u

3
v*
3
) dX, (A.9)

where u and v are some continuous functions, and v* denotes the complex conjugate of the
three-dimensional vector "eld v. The inner product for vector "elds on the boundary, LX, is
de"ned as

(u, v)L"PLX

u ) v*dLX. (A.10)

The natural norm in L3
2
(X ) is then de"ned as

Eu8 EL3
2(X)

"J(u8 , u8 )"SPX

Du8 D2dX. (A.11)

The mean value of the displacement, u8
mean

, over an arbitrary, "nite spatial volume, X
p
,

containing the point p is de"ned as

u8
mean

"

1

Vol(X
p
) PX

p

u8 (x, s) dX, (A.12)

where Vol(X
p
) is the scalar volume of the set X

p
.

For two six-dimensional vector "elds, E and V, the L6
2
(X ) inner product is denoted as

SE, VT and de"ned analogous to the above. The L6
2
(X) norm is analogous to equation

(A.11), i.e.,

EEEL6
2(X)

"JSE, ET. (A.13)

The mean value, E
mean

, of E is de"ned in analogy to equation (A.12).
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The l
2
-norm for an n-dimensional, real or complex, vector y"[y

1
, y

2
,2, y

n
] is de"ned

as

EyE
l2
"S

n
+
i/1

Dy
i
D2. (A.14)

When y is a real vector and the above norm is the well-known Euclidean norm. The
corresponding l

2
-matrix norm for a matrix A, of order n]n, is de"ned as

EAE
l2
"sup

yO0

EAyE
l2

EyE
l2

. (A.15)

The isotropic, elastic generalized Hooke's law relating the elastic stress vector with the
strain vector can be expressed as

H"j )Hj#G )H
G
, (A.16)

where j"2lG/(1!2l), G"E/(2(1#l)), (Hj)ik"1 for i, k)3, and (H
G
)
ii
"2 for i)3

and (H
G
)
ii
"1 for 4)i)6.

The three-dimensional real-valued vector "eld w (m)3R3 is the mode shape number
m with corresponding circular eigenfrequency u

m
, i.e., w (m) is assumed to be the solution to

an elastic eigenvalue problem with equations of motion

!DTHD[w (m)]"u2
m
ow (m) (A.17)

and homogeneous boundary conditions ful"lling

(NHD[w (m)], w (r))L"0 ∀m, r. (A.18)

Due to these assumptions it is guaranteed that the continuous (real) modes of vibration
constitute a set of complete basis functions in the Hilbert space L3

2
(X ) [18]. In addition to

completeness, the modes are orthogonal

(w (m), ow (r) )"a
m
d
mr

, ∀m, r, (A.19)

where d
mr

is the Kronecker delta.

APPENDIX B: PROPERTIES OF THE STRAIN OPERATOR D

The operator, D, as de"ned in Appendix A, is a map from the three-dimensional
displacement space to a subspace of the six-dimensional strain space. The linearity of
D follows directly from the de"nition.

Let A be a set of functions, u
i
(x, s), such that the partial derivatives exist and are

continuous in X, except on a "nite number of interfaces where material discontinuities are
present. Then the domain of de"nition for D is

D(D)"Mu(x, s)3X Du
i
(x, s)3A, i"1, 2, 3N, (B.1)
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where u(x, s) is the three-dimensional displacement "eld de"ned in Appendix A, and
XLR3 is a compact, i.e., closed and bounded, set describing the three-dimensional solid
under study. The situation with a solid structure implies a continuous displacement "eld.
The continuity of the displacement "eld, in turn, implies bounded spatial derivatives.

The operator, D, can be decomposed into three linear mappings, M
i
i"1, 2, 3, and three

partial di!erential operators de"ned as

D
i
[u]"C

Lu
1

Lx
i

,
Lu

2
Lx

i

,
Lu

3
Lx

i
D
T
. (B.2)

Every M
i
is a 6]3 matrix with ones at positions corresponding to di!erentiation with

respect to x
i
in the operator D, and zeros elsewhere.

Then D is explicitly as

D[u]"(M
1
D

1
#M

2
D

2
#M

3
D

3
)[u]. (B.3)

Taking the l
2
-norm (see Appendix A) of the above equation, and using Cauchy}Schwarz'

inequality, the triangle inequality and the fact that EM
i
E
l2
"1 yields

ED[u]E
l2
)ED

1
[u]E

l2
#ED

2
[u]E

l2
#ED

3
[u]E

l2

)K
1
EuE

l2
#K

2
EuE

l2
#K

3
EuE

l2

"KEuE
l2
,

where the boundedness of each di!erential operator D
i
was used, and each K

i
and K are

"nite positive real numbers. Hence, with the domain of de"nition (B.1) the strain operator
D is bounded at all points apart from a "nite number of discontinuity surfaces, where
material discontinuities are present.
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